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Abstract. In this paper, we have introduced a general class of semi-linear first-order 

fractional differential equations (FrDEs) which is modified mathematically in many 
problems in many significant fields of applied science and engineering. The homotopy 
perturbation method (HPM) has been modified for solving generalized linear first-order 
FrDEs. Also, we have tested the modified homotopy perturbation method (MHPM) on the 
solving of different implementations of problems which show the accuracy and efficiency 
of the proposed method. The approximated solutions of the tested problems using MHPM 
are agree well with analytical solutions. However, these solutions proved that the 
proposed method to be high accurate and efficient method. MHPM has been used for 
solving class of generalized factional Riccati DE. The approximated solution of a class of 
nonlinear Riccati FrDE has been studied. Also, we have tested the MHPM on the solving 
of different implementations of this class which are show the accuracy and efficiency of 
the proposed method. The approximated solutions using proposed MHPM of the tested 
problems are agree well with analytical solutions and they proved to be more accurate. 
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Introduction 

The differential equations (DEs) are the most important tools in mathematical model 
for the phenomena of physics. Most of mathematical models in branches of applied 
science and engineering are expressed in terms of functions in one or more than one of 
variables and their derivatives. Fractional calculus is a mathematical tool and is a 
generalization for the integer order calculus. However, the applications of fractional 
calculus have recently been investigated. Many mathematical models in physics and 
engineering systems can be elegantly modeled with the tools of the fractional derivative, 
such as viscoelastic systems, dielectric electrolyte. electrolyte polarization, and 
polarization, (Wang et al., 2014: 66). The researchers: Mechee and Kadhim (2016a: 
4687-4715, 2016b: 1452-1460), Mechee et al. (2014: 6, 2016: 3959-3975) developed 
numerical methods for solving ODEs of third-, fourth- and fifth-order. Due to the increasing 
in the applications of FrDEs, there has been important interest in developing numerical 
integrators for the solution of FrDEs. There are some modern methods for solving DEs 
like as domain decomposition method, generalized differential transform method, 
variational iteration method, finite difference method and wavelet method. Nowadays, 
some of algorithms for the numerical solutions of FrDEs have been proposed in recent 
years. There are some published papers in literature review of the methods of solutions 
of mathematical models which contains DEs. Some researchers developed the numerical 
and analytical methods for solving DEs. Podlubny (1998) used Laplace transform method 
to solve the FrPDEs with constant coefficients, Odibat and Momani (2008: 194) applied 
generalized differential transform method to solve the linear FrPDEs numerically, Zhang 
(2009) discussed a practical implicit method to solve a class of initial boundary value 

(IVP) of time fractional convection diffusion equations with variable coefficients, Ahmad 
and Sprott (2003: 339) studied the chaos in autonomous nonlinear systems of FrDEs, 
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Mechee and Senu (2012: 851) introduced the solution of Lane-Emden FrDE by least 
square method and collocation method numerically, Saeed and Rehman (2015: 630) 
used Haar wavelet (HW) Picard method for nonlinear FrPDEs, Shiralashetti and Deshi 
(2016: 47) introduced HW collocation method for solving ordinary  and fractional Riccati 
equation, Mechee et al. (2019) have used HW technique to approximate the solutions of 
DEs of fractional-order, Saeed and Rehman (2013: 630) used Haar wavelet quasi 
linearization technique for fractional nonlinear DEs while Wang et al. (2014: 66) 
introduced HW method for solving fractional PDEs numerically. For HPM, Mechee et al. 
(2017b) have studied the general solution of second-order PDEs using HPM, Mechee et 
al. (2017a: 2527) have modified HPM for solving generalized linear CDEs and Mechee 
and Al-Juaifri (2019) used HPM for solving generalized Riccati DE. In this paper, we have 
developed HPM and studied the approximated solutions of FrDEs using the MHPM. 

 
Preliminary 
Analysis of Homotopy Perturbation Method (HPM) 
In this subsection, we present the algorithm of HPM to illustrate the basic steps of 

the HPM. Consider the following differential equation (Abbasbandy (2006: 581), Batiha 
(2015: 24), Chun and Sakthivel (2010) and Neamaty and Darzi (2010: 317-369): 

 
𝑇(𝑤(𝑡)) − 𝑔 (t)  =  0, t ∈  Ω     (1) 

 
with boundary condition 
 

𝐶 (𝑤(𝑡),
𝜕𝑤(𝑡)

𝜕𝑡
) = 0,            𝑡 ∈ 𝜕 Ω     (2) 

 
where T = differential operator,   𝑔(𝑡)  = given analytic function, 𝐶 = boundary 

operator and 𝜕 Ω= the boundary of the domain  Ω. T operator can be generally written as 
two parts of 𝐿 and 𝑁 where the linear part is 𝐿 while the nonlinear part in the DE is 𝑁, 
Therefore Equation (1) can be rewritten as follows (He, 1999: 257): 

 

𝐿(𝑤(𝑡)) + 𝑁(𝑤(𝑡)) − 𝑔(𝑡)  =  0,     (3) 

 
One can construct the following homotopy using homotopy technique, 

𝑉((𝑡);  𝑝):  Ω × [0; 1] ⟶  𝑅    which satisfies: 

 
𝐻(𝑣(𝑡); 𝑝) = (1 − 𝑝)[𝐿𝑣(𝑡) − 𝐿𝑤0(𝑡)] + 𝑝[𝐿𝑣(𝑡) + 𝑁𝑣(𝑡) − 𝑔(𝑡)] =  0;  (4) 

 
or 
 

𝐻(𝑣(𝑡); 𝑝) = 𝐿𝑣(𝑡) − 𝐿𝑤0(𝑡) + 𝑝𝐿𝑤0(𝑡) + 𝑝[𝑁𝑣(𝑡) − 𝑔(𝑡)] =  0, (5) 
 

where 𝑝 ∈ [0; 1];  𝑡 ∈ 𝛺 and the homotopy parameter is p while the initial 
approximation for the solution of equation (1) which satisfies the boundary conditions is 

𝑤0. Using Equation (4) or (5), we obtain the following equation: 
 

𝐻(𝑣(𝑡); 0) = 𝐿𝑣(𝑡) − 𝐿𝑤0(𝑡) =  0;     (6) 
 
and 
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𝐻(𝑣(𝑡); 1) = 𝐿𝑣(𝑡) + 𝑁𝑣(𝑡) − 𝑔(𝑡) =  0;    (7) 
 
Suppose the solution of equations (4) or (5) can be written as a series in p as follows: 
 

𝑣(𝑡) = 𝑣0(𝑡) +  𝑝𝑣1(𝑡) +  𝑝2𝑣2(𝑡) +  𝑝3𝑣3(𝑡) + ⋯ = ∑  𝑝𝑖𝑣𝑖(𝑡)∞
𝑖=0 , (8) 

 

set 𝑝 ⟶ 1 results in the approximate solution of (1). Consequently, 
 

𝑤(𝑡) =  lim
𝑝⟶1 

𝑣(𝑡) = 𝑣0(𝑡) +  𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) + ⋯ = ∑ 𝑣𝑖(𝑡)∞
𝑖=0 ,   (9) 

 
It’s important to note that the major advantage of HPM is the perturbation equation 

can be constructed freely in different ways and the approximation can be freely selected. 
 
Semi-Linear Fractional Differential Equations 
In this subsection, we have considered a class of FrDEs which have the following 

form: 

𝐷∗
𝛼  𝑤(𝑡) + 𝑔(𝑡; 𝑤(𝑡)) = 𝑓(𝑡);  𝑡 > 0;  𝑚 − 1 < 𝛼 ≤ 𝑚;   (10) 

 
subject to the initial conditions 
 

𝑤(𝑛)(0) = 𝑎𝑛;       𝑛 =  0,1, … , 𝑚 − 1,       (11) 
 

where 𝑎𝑛 for 𝑛 =  0,1, … , 𝑚 − 1,    are arbitrary constants. 
 
Analysis of MHPM for Solving Fractional Differential Equations 
The objectives of this paper are to develop HPM and to study the approximated 

solutions of the semi-linear FrDEs in Equation (10) according the following algorithm. 
Algorithm of MHPM 
In this subsection, we have presented the algorithm of the new modification of the 

HPM. To illustrate the basic ideas of the MHPM as the following algorithm: 
1. Construct a homotopy for FrDEs in Equation (10) as follow: 
2.  

𝑤(𝑚)(𝑡) − 𝑓(𝑡) = 𝑝[𝑤(𝑚)(𝑡) − 𝐷∗
𝛼(𝑤(𝑡)) − 𝑔(𝑡; 𝑤(𝑡))];      𝑝 ⟶ [0; 1]:   (12) 

 
3. By substituting Equation (12) into Equation (10) and equating the identical 

powers p, 

4. Consequently, we substitute 𝑤(𝑡) = ∑  𝑝𝑖𝑤𝑖(𝑡)∞
𝑖=0 ,  in the Equation (12) and, 

using expansion for the functions 𝑔(𝑡; 𝑤(𝑡)), for the coefficients functions 𝑔(𝑡; 𝑤(𝑡)) =

∑  𝐴𝑗𝑤𝑗(𝑡)𝑛
𝑗=0 . 

5.  Hence, consider the solution of Equation (10) as the following form: 
 

𝑤(𝑡) = 𝑤0(𝑡) +  𝑝𝑤1(𝑡) +  𝑝2𝑤2(𝑡) +  𝑝3𝑤3(𝑡) + ⋯   (13) 
 
5. Collect the identical powers of p then, we have the following equations: 
 

𝑝0 ∶  𝑤0
(𝑚)(𝑡) = 𝑔(𝑡),      (14) 
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𝑝1 ∶  𝑤1
(𝑚)(𝑡) = 𝑤0

(𝑚)(𝑡) − 𝐷∗
𝛼𝑤(𝑡)0 − ∑  𝐴𝑗𝑤0

𝑗(𝑡)𝑛
𝑗=0 ,   (15) 

𝑝2 ∶  𝑤2
(𝑚)(𝑡) = 𝑤1

(𝑚)(𝑡) − 𝐷∗
𝛼𝑤(𝑡)1 − 𝑤1(𝑡) ∑ 𝑗 𝐴𝑗𝑤0

𝑗−1(𝑡)𝑛
𝑗=1 ,    (16) 

𝑝3 ∶  𝑤3
(𝑚)(𝑡) = 𝑤2

(𝑚)(𝑡) − 𝐷∗
𝛼𝑤(𝑡)2 − 𝑤2(𝑡) ∑ 𝑗 𝐴𝑗𝑤0

𝑗−1(𝑡)

𝑛

𝑗=1

 

+𝑤1
2(𝑡) ∑ 𝑗 𝛼𝑗𝐴𝑗𝑤0

𝑗−2(𝑡)𝑛
𝑗=2 ,     (17) 

𝑝4 ∶  𝑤4
(𝑚)(𝑡) = 𝑤3

(𝑚)(𝑡) − 𝐷∗
𝛼𝑤(𝑡)3 − 𝑤3(𝑡) ∑ 𝑗 𝐴𝑗𝑤0

𝑗−1(𝑡)

𝑛

𝑗=1

 

+𝑤1(𝑡)𝑤2(𝑡) ∑ (𝑗2 − 𝑗 )𝐴𝑗𝑤0
𝑗−2(𝑡)𝑛

𝑗=2 + 𝑤1
3(𝑡) ∑ 𝑗 𝛽𝑖𝐴𝑖𝑤0

𝑗−3(𝑡)𝑛
𝑗=3 ,  (18) 

 
and 
 

𝑝5 ∶  𝑤5
(𝑚)(𝑡) = 𝑤4

(𝑚)(𝑡) − 𝐷∗
𝛼𝑤(𝑡)4 − 𝑤4(𝑡) ∑ 𝑗 𝐴𝑗𝑤0

𝑗−1(𝑡)

𝑛

𝑗=1

 

+𝑤1(𝑡)𝑤3(𝑡) ∑(𝑗2 − 𝑗 )𝐴𝑗𝑤0
𝑗−2(𝑡)

𝑛

𝑗=2

+ 𝑤2
2(𝑡) ∑ 𝑗 𝛽𝑖𝐴𝑗𝑤0

𝑗−2(𝑡)

𝑛

𝑗=2

 

+𝑤1
2(𝑡)𝑤2(𝑡) ∑ 𝜎𝑗𝐴𝑗𝑤0

𝑗−3(𝑡) +𝑛
𝑗=3 𝑤1

4(𝑡) ∑  𝜔𝑗𝐴𝑗𝑤0
𝑗−4(𝑡).𝑛

𝑗=4    (19) 

 
Where 𝛼𝑖  =  1,3,6,10,15, … ;  𝛽𝑖   =  1,4,10,20, … … , 

𝜎𝑖   =  3,12,30,60, … 𝑎𝑛𝑑   𝜔𝑖   =  1,5,15, … . . , 
6. However, from the equations (14) -(19), we can get the general solution of 

Equation (10) as follows: 
 

w(t) = 𝑤0(𝑡) +  𝑤1(𝑡) + 𝑤2(𝑡) + 𝑤3(𝑡) + ⋯   (20) 
 
Implementation 
For evaluating the solution of fractional differential equations using MHPM, we have 

provided some different examples for comparison study with analytical solutions of these 
examples. 

Example 1. The Crisp FrDE 
Consider the Crisp FrDE as follows: 
 

𝐷∗
𝛼𝑤(𝑡) + 𝑤(𝑡) = 0;     0 < 𝑎 ≤ 1;    (21) 

 
with the initial conditions w (0) = a: 
Using the algorithm of MHPM for Equation (21), we have the following terms: 
 

𝑤 0(𝑡)  =  𝑎;       (22) 

𝑤 𝑘(𝑡)  =  ∫(𝑤 𝑘−1(𝑡) − 𝐷∗
𝛼𝑤 𝑘−1(𝑡) − 𝑤 𝑘−1(𝑡)) 𝑑𝑡 ;    𝑘 =  1,2,3, …  (23) 

 
So, simplification of equation (23) lends to the following solutions: 
 

𝑤 1(𝑡) = −𝑎𝑡,                                                  (24) 

𝑤 2(𝑡) = −𝑎𝑡 +
𝑎𝑡2−𝛼

(2−𝛼)!
+

𝑎𝑡2

2!
,       (25) 
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𝑤 3(𝑡) = −𝑎𝑡 +
2𝑎𝑡2−𝛼

(2−𝛼)!
+ 𝑎𝑡2 −

2𝑎𝑡3−𝛼

(3−𝛼)!
−

𝑎𝑡3

3!
−

𝑎𝑡3−2𝛼

(3−2𝛼)!
,   (26) 

 
Then, the approximated solution is given as follows: 
 

𝑤(𝑡)  =  𝑤0(𝑡) + 𝑤1(𝑡) +  𝑤2(𝑡) + 𝑤3(𝑡) + ⋯     (27) 

𝑤(𝑡) =  𝑎 − 3𝑎𝑡 +
𝑎𝑡2−𝛼

(2−𝛼)!
+

𝑎𝑡2

2!
+

2𝑎𝑡2−𝛼

(2−𝛼)!
+ 𝑎𝑡2 −

2𝑎𝑡3−𝛼

(3−𝛼)!
−

𝑎𝑡3

3!
−

𝑎𝑡3−2𝛼

(3−2𝛼)!
 +…  (28) 

 

if α =  1 then, the general solution is given as follow: 
 

𝑤(𝑡) =  𝑎𝑒−𝑡 .       (29) 
 

Example 2. Riccati FrDE 
Consider the Riccati FrDE as follows: 
 

𝐷∗
𝛼𝑤(𝑡) + 𝑤2(𝑡) = 0;     0 < 𝑎 ≤ 1;    (30) 

 
with the initial condition w(0)  =  0, comparing Equation (30), we have the following 

form 
 

𝑤 0(𝑡)  =  𝑡;       (31) 
 

𝑤 𝑘(𝑡) =  ∫(𝑤 𝑘−1(𝑡) − 𝐷∗
𝛼𝑤 𝑘−1(𝑡) − ∑ 𝑤 𝑖(𝑡)𝑤 𝑘−1−𝑖(𝑡)𝑘−1

𝑖=0 ) 𝑑𝑡;   (32) 

 

for   𝑘 =  1,2,3, …  
 
So, the simplification of Equation (32) imply to the following equations: 
 

𝑤 1(𝑡) = 𝑡 −
𝑡2−𝛼

(2−𝛼)!
−

𝑡3

3!
,                                          (33) 

𝑤 2(𝑡) = 𝑡 − 𝑡3 +
2𝑡5

5!
−

2𝑡2−𝛼

(2−𝛼)!
+

2𝑡4−𝛼

(3−𝛼)!
+

𝑡3−2𝛼

(3−2𝛼)!
,                     (34) 

𝑤 3(𝑡) = 𝑡 − 2𝑡3 +
2𝑡5

3!
−

17𝑡7

315
−

3𝑡2−𝛼

(2−𝛼)!
+

3𝑡3−2𝛼

(3−2𝛼)!
−

𝑡4−3𝛼

(4−3𝛼)!
+

6(3−𝛼)!𝑡4−𝛼

(2−𝛼)!(4−𝛼)!
+

6𝑡4−𝛼

(4−𝛼)!
+

2𝑡4−𝛼

(3−𝛼)!
−

2(5−𝛼)!𝑡6−𝛼

3(2−𝛼)!(6−𝛼)!
−

4(5−𝛼)!𝑡6−𝛼

(3−𝛼)!(6−𝛼)!
−

16𝑡6−𝛼

(6−𝛼)!
−

(4−2𝛼)!𝑡5−2𝛼

[(2−𝛼)!]2(5−2𝛼)!
−

2(4−2𝛼)!𝑡5−2𝛼

(3−2𝛼)!(5−2𝛼)!
−

2(4−2𝛼)!𝑡5−2𝛼

(3−𝛼)!(5−2𝛼)!
,  (35) 

 
Then, the approximated solution is given as follow: 

𝑤(𝑡)  =  4𝑡 −
6𝑡2−𝛼

(2 − 𝛼)!
− 10

𝑡3

3!
+

4𝑡5

5!
−

2𝑡2−𝛼

(2 − 𝛼)!
+

2𝑡4−𝛼

(3 − 𝛼)!
+

𝑡3−2𝛼

(3 − 2𝛼)!
 

−
17𝑡7

315
−

3𝑡2−𝛼

(2−𝛼)!
+

3𝑡3−2𝛼

(3−2𝛼)!
−

𝑡4−3𝛼

(4−3𝛼)!
+

6(3−𝛼)!𝑡4−𝛼

(2−𝛼)!(4−𝛼)!
+

6𝑡4−𝛼

(4−𝛼)!
+

2𝑡4−𝛼

(3−𝛼)!
−

2(5−𝛼)!𝑡6−𝛼

3(2−𝛼)!(6−𝛼)!
−

4(5−𝛼)!𝑡6−𝛼

(3−𝛼)!(6−𝛼)!
−

16𝑡6−𝛼

(6−𝛼)!
−

(4−2𝛼)!𝑡5−2𝛼

[(2−𝛼)!]2(5−2𝛼)!
−

2(4−2𝛼)!𝑡5−2𝛼

(3−2𝛼)!(5−2𝛼)!
−

2(4−2𝛼)!𝑡5−2𝛼

(3−𝛼)!(5−2𝛼)!
 + …   (36) 

 

if   𝛼 = 1 we get the general solution as follow: 
 

𝑤(𝑡) =  𝑡𝑎𝑛ℎ(𝑡).       (37) 
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Conclusion 

In this paper, HPM has been modified for solving generalized semi-linear first-order 
FrDEs, it named MHPM. MHPM has been used for solving a class of FrDEs and the 
approximated solutions of this class have been derived using Maple software. The 
approximated results which are obtained by MHPM compared with the analytical 
solutions using MATLAB software. The comparison of the results show that the 
approximated solutions of the implementations in which plotted in Examples 1 and 2, a 
and b are agree well with the analytical solutions for the tested problems. Moreover, the 
proposed method is an efficient and high accurate method. 
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