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Abstract. In this paper, we propose the set-membership quaternion normalized 

least-mean-square (SM-QNLMS) algorithm. For this purpose, first, we review the 
quaternion least-mean-square (QLMS) algorithm, then go into the quaternion normalized 
least-mean-square (QNLMS) algorithm. By having the QNLMS algorithm, we propose the 
SM-QNLMS algorithm in order to reduce the update rate of the QNLMS algorithm and 
avoid updating the system parameters when there is not enough innovation in upcoming 
data. Moreover, the SM-QNLMS algorithm, thanks to the time-varying step-size, has 
higher convergence rate as compared to the QNLMS algorithm. Finally, the proposed 
algorithm is utilized in wind profile prediction and quaternionic adaptive beamforming. The 
simulation results demonstrate that the SM-QNLMS algorithm outperforms the QNLMS 
algorithm and it has higher convergence speed and lower update rate. 

Key words: Adaptive filtering, set-membership filtering, quaternion, SM-QNLMS, 
wind profile prediction, quaternionic adaptive beamforming. 

 
Introduction 

The quaternions are a number system that extends the complex numbers. Initially, 
they were introduced by William Rowan Hamilton in 1843 (Hamilton, 1844: 489-495). 
They have many applications to multivariate signal processing problems, such as wind 
profile prediction (Barthelemy et al., 2014: 240-243; Jiang et al., 2014: 821-826; 
Yazdanpanah and Diniz, 2017: 216-220, color image processing (Pei et al., 2004: 2012-
2031; Guo, 2011: 2147–2153), and adaptive beamforming (Yazdanpanah and Diniz, 
2017: 216-220; Zhang, 2014: 274-283; Jiang, 2016). A broad family of quaternion based 
algorithms have been proposed in adaptive filtering literatures (Yazdanpanah and Diniz, 
2017: 216-220; Ujang, 2011: 1193-1206; Took and Mandic, 2009: 1316-1327; Took et 
al., 2009: 3109-3112; Neto and Nascimento, 2011: 81-84. 

The quaternion domain generalizes the complex domain and gives us a useful way 
to process 3- and 4-dimensional signals. In recent years, many quaternion based 
adaptive filtering algorithms have been introduced, and they take advantage of the fact 
that the quaternion domain is a division algebra and it has suitable data representation 
(Pei and Cheng, 1999: 614-628; Le Bihan and Sangwine, 2003: 809-812). Hence, the 
quaternion algorithms permit a coupling between the components of 3- and 4-dimensional 
processes. Furthermore, the quaternion-valued algorithm brings better performance in 
comparison with the real-valued algorithms, since it accounts for the coupling of the wind 
measurements and can be boosted to exploit the augmented quaternion statistics (Took, 
2011: 1754-1760). As a result, as compared to the real-valued algorithms in R3 and R4, 
they present better stability and more degrees of freedom in the control of the adaptation 
process. 

In this work, we assume an effective approach in order to reduce the computational 
resources of an adaptive filter by employing set-membership filtering (SMF) technique 
(Gollamudi et al., 1998: 111-114; Yazdanpanah, 2018; Diniz, 2013). For real numbers, 
the set-membership normalized least-mean-square (SM-NLMS) (Gollamudi et al., 1998: 
111-114; Diniz, 2013; Yazdanpanah, 2016: 1-5) and the set-membership affine projection 
(SM-AP) (Gollamudi et al., 1998: 111-114), (Werner and Diniz, 2001: 231-235; 
Yazdanpanah, 2017: 1-12; Zardadi, 2019: 359-369) algorithms have already been 
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proposed. There are many variants of the set-membership algorithms and their 
applications in adaptive filtering literatures (Galdino, 2006: 277-280; Takahashi, 2009: 
3361-3372; Diniz and Yazdanpanah, 2016: 4174-4178; Albu and Diniz, 2016: 4174-4178; 
Yazdanpanah et al., 2016: 1798-1802; Diniz and Yazdanpanah, 2017: 121-125). 
Moreover, the set-membership quaternion affine projection algorithm has already been 
introduced in Yazdanpanah and Diniz (2017: 216-220). Here, by generalizing the SM-
NLMS algorithm, we want to introduce the set-membership quaternion normalized least-
mean-square (SM-QNLMS) algorithm to operate with the quaternion numbers. The 
product of quaternion numbers is not commutative, and the proposed algorithm gets 
around this drawback. 

Ultimately, we apply the SM-QNLMS algorithm to predicting the wind profile and 
compare their competitive performance with the quaternion least-mean-square (QLMS) 
and the quaternion normalized least-mean-square (QNLMS) algorithms. Moreover, we 
study the quaternion adaptive beamforming as an application of the quaternion-valued 
algorithms. In this manner, we will reduce the number of involved sensors in the 
adaptation mechanism. As a result, we can decrease the computational complexity and 
the energy consumption of the system. As demonstrated in numerical results, we 
recognize that the SMQNLMS algorithm has higher convergence rate and lower update 
rate as compared to the QLMS and the QNLMS algorithms. 

This paper is organized as follows. A short introduction to quaternions is provided 
in Section II. Section III briefly reviews the concept of SMF, but instead of real numbers, 
we utilize quaternions. Section IV reviews the QLMS algorithm, and the SM-QNLMS 
algorithm is derived in Section V. Simulations and numerical results are provided in 
Section VI, and Section VII draws the conclusions. 

Notations: Scalars are denoted by lower case letters. Vectors (matrices) are 
represented by lowercase (uppercase) boldface letters. The quaternion number system 
is represented by H. At iteration k, the weight vector and the input vector are denoted by 

w(k), x(k) ∈ HN+1, respectively, where N is the adaptive filter order. For a given iteration k, 
the error signal is defined as e(k), d(k) − wH(k)x(k), where d(k) ∈ H is the desired signal 
and (·)H stands for the vector and matrix hermitian. 

 
Quaternions 
The quaternion number system is a non-commutative extension of complex 

numbers, represented by H. A quaternion number q ∈ H is described by Hamilton (1844: 
489-495). 

     (1) 
 

where qa, qb, qc, and qd are real numbers. The real component of q is qa, while qb, 
qc, and qd are its three imaginary components. The orthogonal unit imaginary axis vectors 

and  satisfy in the following rules 

      (2) 
 

Note that the quaternion multiplication is a non-commutative operator; we have 

for example. The element 1 is the identity element of H. The conjugate of a 

quaternion q, represented by q∗, is defined as 
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    (3) 
 

and the norm |q| is expressed by 
 

   (4) 
 

The inverse of q is proposed as 

 . (5) 

Note that q can be reformulated into the Cayley-Dickson (Zhang, 2014: 274-283) 
form through 

 , (6) 

where z1 and z2 are complex numbers. 
 
Set-Membership Filtering (Smf) in H 

The aim of the SMF is to obtain w such that the magnitude of the output estimation 
error is upper bounded by a predetermined positive value �̅�. We can change the value of 

�̅� with the specific application. If the value of �̅� is properly adopted, there are many valid 
estimates for w. Assume that S denotes the set of all possible input-desired data pairs 
(x,d) of interest and denote by 𝜃 the set of all vectors w whose magnitudes of their output 

estimation errors are upper bounded by �̅� whenever (x,d) ∈ S. The set 𝜃 is called 
feasibility set and is introduced by 

   (7) 
 

Let’s define the constraint set  containing all vectors w such that the magnitude 

of their output estimation errors at time instant k are upper bounded by �̅�  
 

H(k) , {w ∈ HN+1 : |d(k) − wHx(k)| ≤ γ}    (8) 

 
Then the membership set ψ(k) is introduced by 
 

      (9) 
 

The membership set will contain 𝜃 and will coincide with 𝜃 if all data pairs in S are 
traversed up to time instant k. Due to difficulties to calculate ψ(k), adaptive approaches 
are needed (Gollamudi et al., 1998: 111-114). The simplest method is to calculate a point 
estimate utilizing, for example, the information provided by the constraint set H(k) as in 
the set-membership normalized least-mean-square algorithm (Gollamudi et al., 1998: 
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111-114), or several preceding constraint sets as in the set-membership affine projection 
algorithm (Werner and Diniz, 2001: 231-235). 

 
The Quaternion Normalized LMS Algorithm 

In this section, we review the quaternion normalized LMS (QNLMS) algorithm. For 
this purpose, first, we remind the quaternion LMS (QLMS) algorithm. The QLMS algorithm 
for quaternion signals, which usually appear in image signal processing and 
multidimensional signal processing applications, is derived in Barthelemy et al. (2014: 
240-243). The updating equation for the QLMS algorithm is described by 

 

w(k + 1) = w(k) + µe∗(k)x(k)     (10) 
 

The parameter µ in the equation above is the step-size, and it should be selected 
small enough to guarantee the convergence of the algorithm. In general, the QNLMS 
algorithm presents better performance than the QLMS algorithm in many applications. 
The update equation of the QNLMS algorithm can be characterized as 

  (11) 
 

where is the normalizing term and δ ∈ R+ is a small positive constant 
introduced to avoid division-by-zero exception. 

 
The Set-Membership Quaternion Normalized LMS Algorithm 
The set-membership QNLMS (SM-QNLMS) algorithm has a structure analogous to 

the QNLMS algorithm. The fundamental idea of the SM-QNLMS algorithm is to implement 
an evaluation to check if the previous weight vector w(k) belongs to the constraint set 
H(k). If the norm of the output estimation error signal e(k) is greater than the 
predetermined positive value �̅�, the new weight vector w(k +1) will be updated to the 
closest boundary of the constraint set H(k) at a minimum distance. In other words, the 
objective function of the SM-QNLMS algorithm is given by 

 

     (12) 
 
The updating procedure is obtained by implementing an orthogonal projection of 

the previous weight vector onto the closest boundary of H(k). 
To obtain the recursion rule of the SM-QNLMS algorithm, assume that the a priori 

error e(k) is given by 

 e(k) = d(k) − wH(k)x(k), (13) 

and consider the update equation of the QNLMS algorithm with the variable step-
size µ(k) as follows 

   (14) 
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In order to attain the update equation of the SM-QNLMS algorithm, we require to 

adopt µ(k) suitably such that it satisfies the desired set-membership updating. Indeed, 
the update must happen if 

            (15) 

and the norm of the a posteriori error must be given by 

 (16) 
 

where |ε(k)| = �̅� because w(k) is updated to the closest boundary of H(k). The 
parameter δ is a small constant since it is responsible for regularization to avoid numerical 
problems, thus it can be neglected leading to 

    (17) 

    (18) 
 

     (19) 
 

       (20) 
 

Our purpose is to implement update when |e(k)| > �̅�, thus the variable step-size is 
given by 

 

    (21) 
 

Finally, the SM-QNLMS algorithm is summarized in Table 1. As a rule of thumb, the 

value of �̅� is adopted about  , where  is the variance of the additive noise in the 
desired signal (Galdino, 2006). 

 
Table 1. Set-membership quaternion NLMS algorithm 

 
 SMQNLMS Algorithm Initialization  

w (0) = [0 · · · 0]T  

choose �̅�  around √5𝛿
2

𝜋
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choose small positive constant δ  
Do for k ≥ 0  

e(k) = d(k) − wH(k)x(k) 

 µ(k) = {
1
0

− 
�̅�

|𝑒(𝑘)
 if |e(k)| > �̅�, otherwise.  

w(k + 1) = w(k) + 
µ(k)

xH(k)x(k)+δ
 e ∗ (k)x(k) 

end 

Simulations 
In this section, we utilize the QLMS, the QNLMS, and the SM-QNLMS algorithms in 

two scenarios. In Scenario 1, we use these algorithms in wind profile prediction and, in 
Scenario 2, we implement quaternionic adaptive beamforming by these algorithms. 

Scenario 1 
In this scenario, the QLMS, the QNLMS, and the SM-QNLMS algorithms are applied 

to anemometer readings provided by Google’s RE<C Initiative (Google, 2011). The wind 
speed recorded on May 25, 2011, is utilized for the algorithms comparisons. The step-
size, µ, is adopted as 10−8 and 0.9 for the QLMS and the QNLMS algorithms, respectively. 
The value of �̅� is chosen as 5. The filter order is 7, i.e., w(k) contains 8 coefficients, and 
the prediction step is selected equal to 1. All algorithms are initialized with the zero vector. 

Fig. 1 shows the predicted results using the QLMS, the QNLMS, and the SM-
QNLMS algorithms. We can observe that the QLMS algorithm, the solid magenta curve, 
cannot track the wind speed, the solid black curve, as well as the QNLMS algorithm, the 
dash-dotted blue curve, and the SM-QNLMS algorithm, the dashed red curve. As can be 
seen, the SM-QNLMS algorithm is tracking the wind speed as well as the QNLMS 
algorithm; however, the SM-QNLMS algorithm has lower update rate and avoid updating 
the filter coefficients when there is no innovation in upcoming data. Indeed, the update 
rate of the SM-QNLMS algorithm is 17.9%, whereas the update rate of the QNLMS 
algorithm is 100%. Therefore, the SM-QNLMS algorithm has a significantly higher 
computational efficiency as compared to the QNLMS algorithm, and this algorithm 
outperforms the QLMS and the QNLMS algorithms. 
 Scenario 2 
 One of the most important applications of the quaternion-based adaptive 
algorithms is in quaternionic adaptive beamforming. By utilizing the crossed-dipole array 
and quaternions, we can reduce the number of engaged sensors in the adaptive 
beamforming process. Hence, the computational complexity and the energy consumption 
of the system will decrease without losing the quality of the performance (Jiang, 2016; 
Yazdanpanah, 2018; Gou, 2011: 34-37; Tao and Chang, 2013: 1276-1289; Tao and 
Chang, 2014: 1-10). 

 In this scenario, we perform the quaternionic adaptive beamforming (Jiang et al., 
2014: 821-826; Yazdanpanah, 2018) utilizing the QLMS, the QNLMS, and the SM-
QNLMS algorithms. We assume a sensor array with 10 crossed-dipoles and 
halfwavelength spacing. The step size, µ, for the QLMS and the QNLMS algorithms are 

4×10−5 and 0.009, respectively. A desired signal with 20 dB SNR ( ) impinges 

from broadside, θ = 0 and , 
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Fig. 1. Predicted results from the QLMS, the QNLMS, and the  
SM-QNLMS algorithms 

 
and two interfering signals with signal-to-interference ratio (SIR) of -10 dB arrive 

from  and , respectively. All the signals have the same 

polarization of (γ, η) = (0 ,0), and �̅� is set to be √2𝛿
2

𝜋
. 

The learning curves of the QLMS, the QNLMS, and the SM-QNLMS algorithms over 
100 independent runs are depicted in Fig. 2(a). The average number of updates 
performed by the SM-QNLMS algorithm is 1425 in a total of 10000 iterations, i.e., 14.25%. 
As can be seen, the SM-QNLMS algorithm converges faster while having a lower number 
of updates as compared to the QNLMS algorithm. Indeed, the SMQNLMS algorithm not 
only reduces the update rate but also increases the convergence rate in comparison with 
the QNLMS algorithm. Furthermore, as can be seen, the QLMS algorithm has lower MSE 
and extremely low convergence speed as compared to the QNLMS and the SM-QNLMS 
algorithms. 

The response of a beamformer to the impinging signals as a function of θ is called 
beam pattern and is defined as B(θ) = wHs (θ), where s(θ) is the steering vector. The 
magnitude of beam pattern explains the variation of a beamformer concerning the signal 
arriving from different Direction of Arrival (DOA) angles. Fig. 2(b) presents the magnitude 
of the beam pattern of the QLMS, the QNLMS, and the SMQNLMS algorithms with θ = 0. 

In Fig. 2(b), the positive values of θ show the value range  for  and the 
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negative values, , indicate the same range of but ∅ = −
𝜋

2
. We can 

see that all the quaternion algorithms obtained an acceptable beamforming result since 
the two nulls at the directions of the interfering signals are clearly visible. 

 

 
a        b 

Fig. 2 (a) The MSE learning curves of the QLMS, the QNLMS, and the SM-QNLMS 
algorithms; (b) Beam patterns of the QLMS, the QNLMS, and the SM-QNLMS 

algorithms when DOA of the desired signal is (𝜃, ∅) = (0,
𝜋

2
) 

 

Table 2. The QLMS, the QNLMS, and the SM-QNLMS algorithms 

Algorithms QLMS QNLMS SM-QNLMS 

OSDR (dB) -1.651 -1.508 -0.026 

OSIR (dB) -11.702 -11.564 -10.074 

  
 The output signal to desired plus noise ratio (OSDR) and the output signal to 
interference plus noise ratio (OSIR) for the QLMS, the QNLMS, and the SM-QNLMS 
algorithms are presented in Table 2. The OSDR is attained by computing the power of 
the output signal and the total power of desired plus one-third of the noise signal, and 
then we compute the ratio between these two values. Also, the OSIR is achieved by 
calculating the power of the output signal and the total power of interference plus one-
third of the noise signal, and then we find the ratio between the two. We can observe that 
the best results are attained by the SM-QNLMS algorithm. 
 

Conclusion 
In this paper, we have reviewed some properties of quaternion numbers, and we 

have discussed the set-membership filtering strategy in the systems of quaternion 
numbers. Also, we have studied the QLMS algorithm, and by normalizing this algorithm, 
we have represented the QNLMS algorithm. Then we have proposed the SM-QNLMS 
algorithm aiming at reducing the update rate of the QNLMS algorithm. Finally, we have 
examined these algorithms in wind profile prediction and quaternionic adaptive 
beamforming. As indicated by the numerical results, the SM-QNLMS algorithm not only 
has higher computational efficiency as compared to the QNLMS algorithm but also 
obtains significant higher convergence speed. 
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